DIFFERENTIAL EQUATIONS CourseCode: 1227Degree: Bachelor's in Mechanical EngineeringSchool of Engineering of ElcheYear: Year 1 of Bachelor's in Mechanical EngineeringSemester: SpringType: CoreLanguage: SpanishECTS credits: 6Lecture: 3Laboratory: 3Hours: 150Directed: 60Shared: 4Autonomous: 86Subject matter: MathematicsModule: CoreDepartment: Statistics, Mathematics and InformaticsArea: APPLIED MATHEMATICSCourse instructors are responsible for the course content descriptions in English.DescriptionResolution of mathematical problems that can arise in engineering: differential equations and partial derivatives.FacultyNameCoordinatorLectureLaboratoryVALERO CUADRA, JOSÉ■CARRILLO ZAPATA, BLAS FRANCISCO■■CREVILLEN GARCIA, DAVID■SANCHEZ MARTINEZ, JOSE RAFAEL■Professional interestCompetencies and learning outcomesGeneral competenciesKnowledge about basic and technological material that enable learning new methods and theories, providing versatility for adapting to new situations.Specific competenciesCapacity for solving mathematical problems that may arise in engineering. Aptitude for applying knowledge about linear algebra, geometry, differential geometry, differential and integral calculus, differential equations and in partial derivatives, numerical methods, numerical algorithms, statistics, and optimization.Objectives (Learning outcomes)01To familiarize oneself with the techniques of analytical resolution of some first order ordinary equations.02To familiarize oneself with the techniques for solving higher order linear equations and linear systems.03Understand the basic techniques of qualitative analysis of solutions for first order equations and linear systems in dimension two.04Learn the basic types of boundary-value problems as a basis for studying partial differential equations.05Gain knowledge about numerical methods for solving differential equations.06Develope skills in using Matlab and programming of numerical methods.ContentsLecture topicsTeaching unitsU1First order differential equationsU2Higher order linear equationsU3Systemes linealsU4Laplace transformAssociation between objectives and unitsObjective/UnitU1U2U3U4010203040506ScheduleWeekTeaching unitsDirected hoursShared hoursAutonomous hoursTotal hours1U120462U140483U1406104U1406105U1606126U2406107U220688U1,U2606129U24061010U1206811U34061012U3206813U36061214U3,U44061015U464616Course contentsBasic bibliographyAmigó, José María. "Variable compleja y ecuaciones diferenciales ordinarias". [Elche] Universidad Miguel Hernández D.L. 2002. Boyce, William E. DiPrima, Richard C. "Ecuaciones diferenciales y problemas con valores en la frontera". Mexico [etc.] Limusa 2002. Braun, Martin. Barradas Bribiesca, Ignacio trad. "Ecuaciones diferenciales y sus aplicaciones". México Grupo Editorial Iberoamérica D.L. 1983. Kiseliov, A. Krasnov, M. / Makarenko, G. "Problemas de ecuaciones diferenciales ordinarias". Madrid Mir 1997. Simmons, George Finlay. Robertson, John S. / Abellanas, Lorenzo trad. "Ecuaciones diferenciales con aplicaciones y notas históricas". Madrid [etc.] McGraw-Hill cop. 1993. Zill, Dennis G. Cullen, Michael R. / González, Virgilio, tr. "Ecuaciones diferenciales con problemas de valores en la frontera". México Thomson Learning c2002. Complementary bibliographyLópez Rodríguez, Manuel. "Problemas resueltos de ecuaciones diferenciales ". Madrid Thomson-Paraninfo, [2006]. Pérez García, Víctor M. Torres, Pedro J. "Problemas de ecuaciones diferenciales ". Barcelona Ariel 2001. LinksSoftwareMATLAB 2015AMethodology and gradingMethodologyLecture: Pass on knowledge and activate cognitive processes in students, encouraging their participation.Problem-based learning: Develop active learning strategies through problem solving that promote thinking, experimentation, and decision making in the student.Solving exercises and problems: Exercise, test, and apply previous knowledge through routine repetition.GradingThe final mark for the course is obtained through a weighted sum of the final exam, computer practices and the tutorials. The weight of each item is: Final exam: 75% Computer practices: 20% Tutorials: 5%In the extraordinary exams the final mark will be obtained by a weighted sum of the final exam and computer practices. The weight of each section is as follows: Final exam: 80% Computer practices: 20%